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The theory of slender beams is often used to study the equilib- 
rium of cleavages in a narrow strip [1]. In the present work the beam 
approach is extended to the case of a moving cleavage. Attempts are 
described in the literature, where the dynamics of cleavages is con- 
sidered in a beam approximation [2-6]. These are based on replacing 
the elastic bar, which is a system with an infinite number of degrees 
of freedom, by a certain other system with one degree of freedom. 
This, however, is always not permissible. 

w 1. DerivaXion of the equaRo~ of motion and the boundary c o n d i -  
t i o n ~ .  Let us consider the motion of a cleavage along the middle line 
of an elastin semi-infinite bar (x -> 0) of rectangular cross section with 
the dimensions given in Fig. 1. The length of the cleavage at the in- 
stant t is denoted by/(t) .  To fix ideas we assume that the faces of the 
cleavage are loaded at the point x = 0 by means of loads of mass m 
located in a gravitational field with acceleration g. We assume that 
the bar is weightless and that the material of the bar has the density p, 
Young's modulus E and the density of surface energy T. We shall con- 
sider the motion of that half of the bar which lies above the cut. The 
moment of inertia of this half of the bar about the neutral axis is de- 
noted by I = 8bH/12. The deflection of the neutral axis from the non- 
loaded state is denoted by u(x, t). The transition of the system from 
one state of motion 

O~ a u  (z ,  t l )  
t = h ,  u = u ( x ,  tx), ~ - -  a t  ' l = l ( h )  

into another 

Ou Ou (z, t~) 
t -=  t.2, u -~  u (~, t2), a t  - -  Ot ' l = l (t2) 

takes place in accordance with the principle of least work in such a 
way that the extremum of the integral 

te 

S = l  ( g - - I I ) d t  

is realized. 

Here K is the kinetic energy and 7r is the potential energy of the 
system [7]. We assume that 

t(t) 
ff pbH fOu (:c, t)7 2 m FOu (0, t)7~ 

o 

In the expression (1.1) the kinetic energy of the load and the 
kinetic energy of the vertical displacement of the neutral axis of the 
beam is taken into account with the assumption that the entire mass of 

l 

Fig. 1 

the beam is concentrated on the neutral axis. The potential energy is 
taken in the form 
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II l~t) g J  [a2u (Z, t)~ 2 , , 
= ~ w L ~ J  " ~  ~-  "~g (n  - u (0, t)) + T b l  (t). (1 .2)  

o 

Here the energy of elastic flexure [8], the potential energy of 
the load (the constant R is equal to the initial height of the load) and 

Fig. 2 

the surface energy of one face of tile cut are taken into account. The 
expressions (1.1) and (1.2) are approximately true under the conditions 

02u t 02u t Ou 

i. e. ,  when the potential energy of shear can be neglected in compar- 
ison with the energy of flexure, and when the direction of the neutral 
axis and its velocity do not vary significantly over distances which are 
of the order of the transverse dimension of the bar. 

Thus, it is required to find such functions u(x, t) and l(t) which 
transform the first variation of the functional 

t2/(t) 
S ~ I  I [ ~  /Ou \~ EJ /O~u'~"] 

tl 0 
t~ 

_t_ S [ r;~ [Ou (O, , ) ,  2 ( t ) i l d  t L-if- k ~ )  - -  mg (R --  u (0, t)) --  Tbl 
t, 

into zero. 
As usual, we assume that at the end of the cleavage we have a 

rigid fixing, i . e . ,  for x = l(t) 

u (l, t) = O, Ou (l, t)/ox = 0,  (1.8) 

Taking the total derivative with respect to time of the first Eq. 
(1.3), by virtue of the second Eq. (1.3) we obtain the velocity at the 
point of fixing 

ou (z, t) 
at = o .  (1.4) 

In Fig. 2 we have shown the plane of the variables x and t, and 
the region of integration in calculating S: 0 -< x -< /(t), t 1 -< t - t 2. 
The variation of the functional S is calculated with the condition that 
both the function u(x, t) and the right hand boundary of the region l(t) 
are subjected to variation. 

To find the unknown functions we proceed using standard varia- 
tional methods [9]. We introduce families of functions u(x, t, c~) and 
/(t, a )  that continuously depend on the parameter a .  We asinine that 
these functions are such that all the analytical operations which are 
necessary in the calculations, are admissible. 

In addition, by definition these functions possess the following 
properties: 

u ( z ,  t, 0) = u (x ,  t),  l (t,  0) = l (t) ,  ( 1 . 5 )  

U (X, t l ,  a )  = U ( Z ,  t l ) ,  U (X, t~, a )  = u (X, t2),  (1.6) 
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u [l (t, at), t, =l = O, Ou it (t ,  a) ,  t, r = 0 (1 .q )  
Ox 

The functional S is considered as a function of a .  We introduce 
the notations 

6u (z ,  t) ou  (z,  t, o) .~ Ol (t ,  o) o s  (o) 
- -  o~ a, 6 / ( t ) = - - - g f f ~ ,  8 S = - - 5 ~ e .  (1.8) 

From the definitions (1.8) and the conditions (1.6) it follows 
that 

6u (z, h) = 6u (x, t~) = 0 . (1.9) 

Furthermore 

6u [l (t), tl = O, 06u I l (t), t I 02u it (t), t l Oz - - - -  0x ~ 6 l .  (1.10) 

To obtain the conditions (1.10), it is sufficient to represent the 
quantity u[l(t), t, a] in a Taylor series of powers of the difference 

l(t) -- /(t, a )  

t 0" u [l (t, ~), t, a] 
u [l (t), t, ~1 = nl O~ n [z (t) l (t, tl)] n 

rt~O 

We calculate the part 52S of the variation which arises in varying 
the boundary t(t) 

6,S = 1~ I - -  g J  [O~u g, t)7~ Tbl  61 dt [ 2 k 0~  J -  j �9 

In obtaining 6zS we have used Eq. (1.4) and the rule of differenti~ 
sting a definite integral with respect to the upper limit. 

O, Olg 

3.008 
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Stipulating that 8S = 618 + 6~.8 = 0, we obtain the equation of 

motion 

and to use the definition (1.8) and the properties of Eqs. (1.5), (t.7). 
Let us calculate 5S. We first calculate the variation 518, assum- 

ing that the boundary t(t) is fixed 

t~ l(t) 
6 , 3 = S  f [pbH Ouo6u OeuO'6u7 

t~ 0 

tz 
[m c3u (0, t)08u (0, t) t)] + Ot O ~  + mgSu (O' j d t "  d L 

t~ 

We transform the double integral, applying the formula of Green 

where the integral on the right side of this formula is taken along the 
boundary of the region of integration in the double integral. We go 
counter clockwise, if the x, t coordinate system is a right-handed one~ 

0 

L l 

Fig. 8 

in a contrary case we go clockwise. The first term in the single integral 

is transformed by integrating by parts. 
Taking into account the condition (1.4) and the boundary values 

of the variations (1.9), (1.10), we obtain 

t~ 
O~u (0 t) O6u (0, t) 

h 

-- EJ  ~ 6u (O,t) + 

tzl(t) 

[EJ  ~ + o �9 
t ,  0 

O4u (z, t) t O~u (z, t) E J  (1 ,11)  
Oz4 -[- a 2 Ot' = 0 ,  a ' - - p b  H 

and the natural boundary conditions 

O2u aSu / O~u~ 
0--7=0, E Y ~ = m ~ g - - - ~ ' ~ ]  @~-0) ~ (1.12) 

O~u (l, t) A [2Tb\% 
o~ = A ,  = ~ 2 - f j  " (1.13) 

Furthermore, the conditions (1.3) are satisfied for x = l(t). To 
determine completely the motion of the system under consideration, 
we must specify, at a certain initial instant, a distribution of the dis- 
placements and velocities that is compatible with the boundary condi- 

tions, 
Equations (1. l l) ,  (1.12) and (1.13) together with the correspond- 

ing initial conditions describe the motion of a beam with one end rig- 
idly fixed at x = l(t), and with a zero moment and shear force due to 
the weight of the mass specified at the end x = 0. The conditions at 
the left end depend on the method of loading and can be specified 
immediately, proceeding from the fact that the moment and shear 
force are proportional respectively to the second and third derivative 
of the displacement with respect to the coordinate, It is easy to show 
that in the casewhere distributed normal loads are applied to fne faces 
of the cleavage, Eq. (1.11) is transformed into a nonhomogeneous 

equation. Here a function equal to the linear density of the load divided 
by the flexural rigidity stands on its right side. 

The conditions (1.11), (1.12) and (1.a) enable the solution to be 
found for any law of motion l(t) of the point of fixing. As follows from 
the conclusion, in reality only such motions are realized for which the 
condition (1,13) is fulfilled. Consequently, this condition, within the 
limits of applicability of the theory of thin beams to the study of cleav- 
ages, plays the same part as the condition of finite stresses of G, I. 
Barenblatt [1] does in the general case elastic-brittle failure. We note 
that in [2-6], in considering the motion of a cleavage, the static solu- 
tion for a clamped beam of length l, loaded arbitrarily at the free end, 
was taken as the solution u(x, t). At the same time it was assumed that 
the parameter l depends on time. As a result, the conditions at the 
loaded end and the conditions of fixing were found to be fulfilled, but 
Eq. (1.11) and the condition (1.13) were violated almost everywhere 
(with the exception of the position of equilibrium). The further away 
from the position of equilibrium was the system, the stronger was this 

violation. 
w Examples. a) Stationary motion. Let us consider a solution of 

the form u(x, t) = u(x - Vt), where V is a constant having the dimen- 
sions of velocity, for the boundary conditions specified on the lines 

X = x - Vt = const and depending only on • 
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In the case of stationary wedging by a wedge of thickness 2h the 
boundary conditions are specified as follows: 

u = h,  O~u/Oz 2 = 0 ,  ( z  = V t )  , 
u = O, O u / O x =  O, 02ulO~.-'='--A ( z = V t +  l ) .  (2.1) 

Under these conditions l is the unknown constant length of the free 
cleavage in front of the wedge. 

If in Eq. (1.1) and in the boundary conditions (2.1) we transform 
into • then we obtain an ordinary differential equation and boundary 
conditions for X = 0, • = t for the determination of the function u(• 
Using the conditions (2.1), we obtain the displacement 

u (X) = h - -  V~- sin --if- q- % --V cos X 

a 9 
• (--~" s in VI . a VI  \ -~ T - ~  -r eos-s +~]. (2.2) 

It is necessary to point out that  F-xt. (2.2) defines the displace- 
ment  only in the region 0 ~ • -< l. When • < 0, the solution is sought 
such that u(0) and u'(0) would be continuous, with u " ( - 0 )  and u ' ( - 0 )  
being 0. This ensures the necessary jump of the third derivative in 
passing through the point of appl icat ion of the concentrated force. 

t6 IX 

I2 / 
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From the last condition (2.1) we obtain the equation for deter-  
mining l: 

VI / a 2 VI  a VI \ - t  
h sin -~- ~"-97 sin -g  TT- l cos -~-)  = A (2,3) 

Going to the l imit  V ~ 0 in Eq. (2.3), we obtain the equilibrium 
length l 0 of the cleavage before the stationary wedge: 

9h 2 3EHSh  2 
l ~  A 2 - -  8 T  (2.4) 

We rewrite Eq. (2.4) in the dimensionless form 

t t t V-'{32 ~10L (0-~= 
3 ~  = t2~ '-'02L~ ] / ' ~  ~]0L ctg 

1 / 0 ) 
L = - ~ -  ~ , n = U T  . (2 .5 )  

The relation (2.5) is shown in Fig. 3 in the L, 0 coordinates for 
various values of the parameter  ~. When the cleaving velocity V in-  
creases to infinity, the length as 1 /V tends  to 0. The absence of any 
special  features in passing through the velocity of propagation of the 
surface waves is due to the approximation (1.1), (1.2) adopted here. 
The absence of a l imiting velocity of the flexural waves (their velocity 
increases as the length shortens) is characteristic for this approximation 
[8]. Thus, for smal l  1/H the beam approach is not applicable, and a 
more accurate analysis is required. 

Let us consider the stationary motion of a cleavage when concen-  
trated forces p are applied at a distance t from its end. The boundary 
conditions for this case will  be 

02u @aU 
Ox 2 - -  O, E J  g - ~  = p @ = Vt )  , 

Ou O~u 
u = 0 ,  Oz - - 0 ,  ~ 7 x ~ = A  ( x . = V t + l ) .  (2.6) 

Proceeding as before, we obtain the connection between the 
velocity of mot ion V and the length l: 

a Vl  A E J  (2.7) 
-~-sin~ = p 

Going to the l imit  V --~ 0, we obtain the equilibrium length of 

the cleavage: 

Ag: ~ (2.8) 

It is well  known that the equilibrium in this case is unstable. 
Using the  notations (2.6), but determining t 0 from Eq. (2.8), we re-  
write Eq. (2.7) in the dimensionless form 

O~] = s in  ] / ' ~ 0 ~ L  . (2 .9 )  

As is seen from Eq. (2.9), a stationary motion is possible only for 
L -> 1, y - ~  0~l ~ t .  Any velocity of motion V ~ 0 corresponds to infi- 

nitely many lengths of the cleavage. Considering only positive values of 
the sine, which corresponds to a motion in the positive direction of the 
abscissa axis, we can write 

2nn ~ ]/'t-20~1L ~ ~x (2n q- 1) (n = 0, i ,  2,  3 , . . . ) ,  

Let at the beginning n = 0. The relation (2.9) for this case is 
given in Fig. 4 in the L, 0 coordinates for various values of r/. Two 
states of motion correspond to each velocity. When I ~ L ~ l / 2  ~ , an 
increase in l, for the unakered velocity V and the force p, must cause 
an increase in A to preserve the equality (2.7). It is intuitively clear 
that, since A is constant, the cleavage abandons the stationary state 
and begins to accelerate; this causes a further increase in the length I. 
Exactly in the same way a random shortening of the cleavage leads to 
it being shut with a snap. The stationary motion for 1 ~ L  % '/e -~ is 
consequently unstable. From similar considerations it follows that for 
L > 1/2 n the necessary condition of stability of the stationary state 
is fulfilled: for a random increase in ? the cleavage tei~ds to reduce its 
velocity, whereas  for a reduction it tends to increase its velocity. 

In the case of a natural number n the length [ differs from the 
length given in Fig. 4 by the amount ( 2 n t I / ] / ' ~  O) n .  The factor of 
n represents the length of the sinusoidal flexure wave, which is capable 
of propagating along the bar with the velocity V. Two states of motion 
are possible for each n: if 27~n~ ] : ~  0TI L ~ x  (2n-[-1/.) . then the 
motion is unstable; if, however, :I(2n -[- th) < 12~72 0qL < :'c (2u + 1), 
then the necessary stability conditions mentioned above are satisfied. 
The behavior of the system after it leaves the stationary state remains 
unclear, since then already nonstationary motions mu st be considered for 
its study. We can only point out the a priori possibility of the system 
to pass from the unstable state into a stable on (if the latter exists), 
Precisely which n is realized i n t h e  reality, depends on which displace- 
ments and velocities are specified at the initial instant to secure the 
subsequent stationary motion. 

It is not difficult to analyze the case where the load is distributed 
over the faces of the cleavage, and in a steady state moves with it. 

b) The motion of a cleavage when its faces at the origin of tb.e 
coordinates are moved apart with a constant velocity U. Let us consi- 
der the motion of a cleavage in a semi-infinite bar for the following 
boundary conditions: 

O:u (0, t) 
u (0, t) = g t ,  oz'-' - -  O, 

Ou (I, t) O"-u (I, t) 
u ( l ,  t ) ~ O ,  Ox = 0 ,  Ox~ = . 1  (2.20) 

Equation (1.11) and the condition (2.10) are invariant with respect 
to the group of transformations of the scales u = h'~.~, z , /,-x~. 
t = kZt~, where 1< is any positive number. Therefore the solution is 
sought for as a relation between the invariants of this group: 

u (X,Ut t) : J (~), F, = atX~ (2 .11 )  



J O U R N A L  O F  A P P L I E D  M E C H A N I C S  A N D  T E C H N I C A L  P H Y S I C S  125 

Substituting FNs. (2.11) into Eq. (1.11) and the conditions (2.10), 
we obtain the following equation for determining the function f(g): 

dV a ~1 (_K+!~eV_o 
d~ ~ q-  -~- - ~ -  -4- \ 4~2 t6  / d~ 2 - -  " (2.12) 

and the boundary conditions 

I (0) = t, lira [4~]" (~) -ff 2]' (~)]=0, (2.13) 

/ (x)=0, ]' (~)=0, 

aA l 2 
4V" ( % ) = ' V  ' ~ = -d / -  ' (2.14) 

Using the substitution d2J/d~ ~ = Y ([)~-~/' we reduce Eq. (2.12) 
into a linear equation with constant coefficients. Its solution yields 

d~ 

o o  o o  

= D  _ 42~+1(2nq-I).' §  = 4 ~(2n)!  ' 

where D and E are arbitrary constants. Integrating twice, we obtain 
the general solution of Eq. (2.12) 

4 0  

n=o 42n+1 ( 2n @ t) ! (2n @ I/2) (2n + ~/.2) @ 

o o  ' 

(-- t)n~2n+% 4- B~ @ C (2.15) 
@ E s 42n (2n)! (2n -- :/2) (2n q- ~/~) 

n ~ O  

where 13 and C are constants of integration. 
From the conditions (2.13) it follows that 13 = 0, C = 1, D and E 

are determined from the first and second conditions (2.14) as functions 
of X. The third condition (2.14) enables X to be found as a function of 
the velocity U of the faces moving apart. Thus 

l(t) = F ~ ( U )  / aA)at  . (2.18) 

The velocity of the cleavage varies inversely proportionally to 

its length: 

d l  a% (U / aA) (2.1~) 
dt ~ 2l 

The graph of the function X is given in Fig 5 (curve 1). The 
boundary condition ~ (0, t)/Ox ~ = 0 allows us to generalize: for 
x = 0 we can specify any bending moment that is constant with time. 

Analogously we can investigate a motion that is symmetrical 
about the point x = 0 in an infinite bar (-- oo < x ~ oo) . The differ- 
ence consists only of the fact that instead of the bending moment 
specified at x = 0 we must impose the condition Ou (0, r = 0. The 
half length I of the cleavage again has the form (2.15), the function 

k is different. Its graph is shown in Fig. 5 (curve 2), The shear force at 
the origin of the coordinates in both cases varies inversely proportion- 
ally to the length of the cleavage. The occurrence of arbitrarily large 
velocities of motion of the cleavage for small lengths is explained ex-  
actly in the same way as in the case of stationary wedging. The mean-  
ing of the solution thus obtained is not that it can be used to describe 
the motion of short cleavages. It means that if at any instant of time 
the distribution of the displacements and velocities is described by the 
formulas (2.t l) ,  (2.15), then the subsequent motion will be a self- 
modeling motion described by the same formulas. If, however, the 

initial data has an arbitrary form u (x', 
the dimensional analysis we have 

u(x,t)~UtcO(z~__T, u (x', O) ---07--' 

0), Ou (x',  O)/Ot , then from 

t O u ( ~ ' , 0 ) a ~ )  
Er Ot ' 

instead of the expression (2.11), where rp is a dimensionless function 
of its arguments. As the time increases, the dependence on time is 
retained only in the first argument. The solution for t -~ ~o tends to 
the form (2,11), and the velocity of the cleavage tends m the form 
(2.17). At the Same time the function k is determined not only by 
the quantity U / a A  but also by the initial data. 

The examples considered here allow us to make the following 
statement: the inertia term in Eq. (1.11) must be considered when the 
ratio of the velocity of the cleavage to the velocity of the flexural 
waves, having the same length as the cleavage, carmot be neglected 

in comparison with unity. 
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